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Energy and structure of inertial range turbulence deduced from an evolution of fluid impulse
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We explore numerically a very simple idea that may provide a material explanation for inertial range
turbulence. We base a Lagrangian model of viscous incompressible fluid flow on an evolving ensemble of
vortex doublet sheets. Initially these are randomly oriented and randomly distributed within a disk in two-
dimensional space. These sheets are then actively transporteeb dimensionsaccording to the Oseledets
equation of motion for fluid impulse. The mutual interaction of these sheets, and their diffusion, establishes a
velocity fluctuation field. In a specific sense this evolution is self-affine, and we exploit this property to
calculate standard statistical measures for the fluctuation field. We determine from this simple model the
second-order structure function and the energy spectrum of inertial range turbulence.
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[. INTRODUCTION from the near-wall regime into the flow interior; in the
present paper, we investigate numerically the statistical prop-

A complete mathematical theory of turbulence deducecrties of the associated fluctuations in such an interior re-
from equations of motion has proved elusive. Although tur-gime. To do this we conceive of an ensemble of doublet
bulence is observed to be, at small scale, a complex fluctiglements randomly distributed within a compact subdomain
ating velocity field, flow regimes characterized by the “iner- of unbounded space. The ensemble represents an unforced,
tial range” of turbulence appear to exhibit strikingly simple decaying system. In the present paper, we explore this model
statistical properties. For example, one statistical measur®r two-dimensional geometry. We calculate the two-point
(the second-order structure functicassumes in this regime covariance of the resulting velocity fluctuation field at a par-
ar?? dependencer(being the separation between two cor- ticular instant during this evolution.
relation pointy. The 2/3 power-law exponent is consistent ~ 1he foregoing material explanation of the process of tur-
with the prediction—based on dimensional ana|ysis_bulence differs in a fundamental way from that associated
determined by Kcﬂmogoro[ﬂ_] and Obukho\[z:l The gues- with the KOlmOgorOV'ObUkhOV theor)[l,2] or with its
tion of how such scale relationships arise from the equation§laboration for two dimensions described by Kraichii@h
of motion is a long-standing preoccupation of research in thiésee also Ref9] for a discussion of Batchelor’s contribution
area. to this subject We do not conceive, explicitly, of a cascade

In an experimental setting, turbulence is typically gener-Process, nor do we invoke the limit of infinite Reynolds
ated by passing fluid over a solid surface. Turbulence geneffumber(i.e., we do not associate inertial range turbulence
ated at such boundaries becomes subsequently transpori@h the zero-viscosity limit In Sec. IIl D, we argue that the
into the flow interior. The present paper is motivated by alnertial range is characterized by the condition that—
speculative identification of such turbulence creation withexpressed in terms of the kinematics of impulse doublet
the creation of fluid impulse at a solid boundary as describegheets—diffusive displacement is comparable in magnitude
in Refs.[3-5]. In particular, a vortex doublet sheet is con- to advective displacement. Thus, we are in a regime that is
tinuously created at a solid boundary in response to viscou@r from flow constrained by inviscid constants of motion.
boundary Conditions_ This Sheet fragments and ev0|veyve will ShOW that, in thlS I’egime, the kinematiCS SatisfieS a
through viscous diffusion and through advecti@ecompa- Self-affine property and that it is this property that leads to
nied by rotation and stretchipgnto the flow interior accord- the power-law exponents predicted by Kolmogorov.
ing to the equation of motion introduced by Oseledé&k The simple model we present here depends fundamentally
(The physical interpretation of this as an equation of motiorPn the Brownian motion of fragments of impulse density.
for fluid impulse density was introduced by Buttkg.) The ~ Thus, we are describing a viscous mechanism. We recall the
elements of this developing ensemble of doublet fragmentgemark of Kraichnar10] to the effect that the Kolmogorov-
induce a local contribution to the velocity. This induced con-Obukhov power-law exponents are experimentally observed
tribution is influenced by the fact that the trajectories of thefar from the high Reynolds number range of validity we
inducing doublet fragments have, in part, a stochastic chatsually associate with Kolmogorov theory. For example,
acter: they constitute a system of advecting and diffusingiote Figs. 5.7 or 5.8 in Friscfi1]. The present model can
submacroscopic sources. The effect of this is to establish, ifffer an explanation for this unexpectedly extensive spectral
ensemble, a velocity fluctuation field. range of the power laws.

In the following, we give a brief Lagrangian account of
this generation of impulse at a wall. The character of the
fluctuation field that develops in the immediate neighbor-
hood of the wall has been discussed elsewksze Ref[5]). A representation of flow in terms of fluid impulse is
As time progresses the created elements of impulse evolvachieved by postulating a simple “constitutive relationship”

Il. EVOLUTION OF IMPULSE
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to accompany the momentum equation; this is, namely, anal component of the velocity field vanishes at the boundary.
decomposition(first proposed by Kuz'min[12]) through Also, we consider the fluid to adhere at the wall, implying a
which the velocity field of an incompressible fluid is ex- no-slip condition there. These two conditions are expressed
pressed as the sum of a “local field@Which is the density of as the union o@D of

fluid impulse, and of a “nonlocal field.” This postulate is

made in a manner analogous to the postulating of constitu- u-n=0, (2.39

tive relationships to accompany Maxwell’s equations in elec-

tromagnetism. Kuz'min’s decomposition can be stated as u-s=0, (2.3b

u=m-+grade, (2.1)  wheren is a unit vector normal t#D andsis a unit vector
tangential togD. Substituting Eq(2.1) into Egs.(2.3), we
whereu is velocity (with vanishing divergende m is im- infer the following conditions to be satisfied by at the
pulse densitywhose curl and divergence are both nonvan-wall,
ishing); and ¢ is a scalar fieldthe curl of gradp vanishes

identically). The relationshig2.1) can be formally classed as m-n=—4d¢/n, (2.43
a Hodge decomposition af, which is to say a decomposi-

tion into a solenoidal field W), and an irrotational field m-s=—d¢lJs. (2.4b
(gradg).

Oseledetd6] determined that if Eq(2.1) is substituted ldentifying m as an impulse density has a natural signifi-
into the Navier-Stokes equatiofand if, as Russo and cance atsuch a boundary. Impulse is a time integral of force
Smerekils] Observe’ a particular choice of gauge is n’)ade taken in the limit of Vanishing time interval. We will under-

an equation of motion fom is obtained stand Egs.(2.4) as relationships that express the impulse
imparted to the flow at an instant of time, in response to an
Dm/Dt=—(Vu)'m+Re 1Am (2.2 impinging velocity field whose potential is given hy. We

) ) ) ) apply the divergence operator to E@.1) and noting that
(with an accompanying decoupled equationdgr Re isthe  giy y=0 for incompressible flow, we deduce the Poisson
Reynolds number. The operatbrDt is the time derivative  gquation

along particle trajectories) is the Laplacian operator; and
theij element of the matrixVYu)' is au; 19x; for a velocity A¢p=—divm. (2.5
field u=(uq,u,,u3z) at a point &;,X,,X3) in three-
dimensional space. The first term on the right hand side of If we constrain impulse to be normal at the wall, the
Eq. (2.2 represents the deformation and rotation of a mateboundary condition(2.4b implies the conditiond¢/ds=0
rial element of the fieldn as it evolves in the stream. Our there. This condition ensures the existence of a solution
choice of gauge is made in order to achieve the separated Eginique to an additive constarib the differential equation
(2.2 that we require for a Lagrangian model. This equation(2.5); the vector gra@ is therefore uniquely determined and
is consistent with a Hamiltonian forrf6]; exploiting this  the Kuz’min decompositiori2.1) will also be uniquely de-
fact, Buttke[ 7] and Buttke and Chorifil4] demonstrate that termined for such a case. We refer now to the first equation
numerical models of inviscid three-dimensional fluid motionin Eq. (2.4), namely, m-n=—43J¢/dn=—n-grad¢y. At a
can be based on tracking elements of the impulse densitfixed time ¢,) we consider the boundaD to lie outside
variablem as these evolve in the flow. Lagrangian modelsthe support of previously created impul§ee., created irt
based on impulse have been pursued in a number of inviscig't,). We observe that if we can solv@.5 to deduce
contexts—for example, in the modeling of the motion of angrad¢, then we can proceed to calculate that normal impulse
immersed membranil5,16. We note too the model of in- (imparted to the flow a#D) which is required to effect im-
viscid turbulence developed by Smergkd] that is based on permeability, i.e., we can calculate there. The support of
the Euler form of Eq(2.2). this created field will necessarily be that of a thin sheet co-
Since we attach ton a material interpretation, Ed2.2) incident with the wallit therefore does not contribute to the
can be understood as an equation of motion for a field thatight hand side of Eq(2.5) att=t,]. This field subsequently
has compact support, in fact analogous to the evolution of @volves from the wall into the fluid interior over the follow-
source density field in a magnetic material. We conceive it tang time interval according to Eq2.2).
be comprised of an ensemble of vortex dipoles. We can un- The impermeability condition need not occupy a privi-
derstand the nonlocal field gradas a volumdor ensemblg  leged position: we can equally constrain impulse to be tan-
weighted average ah. The implication of Eq(2.1) is that  gential at the wall. In this case the first equation in Eq4)
the two fieldsm and gradp (which are, respectively, local implies the boundary conditiof¢p/9n=0 on dD. The solu-
and nonlocal interpenetrate, and in summation, constitutetion of Eq. (2.5), consistent with this condition, determines
the divergence-free velocity fieldl. an alternative, and complementary functignwith a vector
To understand the physical origin ofi we look to the function grads$ again uniquely determined. We deduce that
boundaries of the flow. When a moving viscous fluid is inthe impulse orvD required to effect the no-slip condition is
contact with a solid wall, we impose two boundary condi-given bym-s= —s-grade.
tions there. The fact that the fluid does not penetrate the wall We have, in effect, decomposed the viscous boundary
is expressed through an impermeability condition: the nor€onditions into two complementary modes of impulse cre-
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ation. In Refs[3-5], we describe the mode that derives from by establishing the difference between the instantaneous field
d¢plon=0 on gD as “Case |,” and that which derives from and the evolving mean field at the point.

d¢lds=0 ongD as “Case II.” Both these modes can occur  In the present paper, we ascertain whether an ensemble of
in superpositior{see Sec. 4.2 in Ref5]). Once created, such such doublet sheets can give rise to a flow with the same
impulse evolves from the wall into the flow interior accord- statistical signature as that found in physical turbulence ex-
ing to the transport equatio(®.2). We can represent this periments. We confine our attention to two specific statistical
process as the creation, at successive instants of time, of ameasures of inertial range turbulen@éhich is to propose to
assembly of impulse dipoles at the wall. In both cases we camodel a spatially unbounded flow that is statistically station-
appeal to the electromagnetic analogy to understand theary and isotropic, and for which the fluctuation intensity is
physical significancgsee, for example Ref4]). Dipoles low relative to the mean velocity fieldWe do this by means
created normal at the wall are equivalent to a system of voref a simple two-dimensional model. We distribitNampulse

tex loops coincident with the surface. In the near-wall regimedoublet sheets randomly within a disk of radRiseach sheet
these elements are closely related to the separation or attadis uniform length\, but is randomly orientedLengths are
ment of flow. In two dimensions this distribution of dipoles reckoned in dimensionless units.

constitutes a vortex singlet sheet. As these created objects

evolve from the wall they represent, in ensemble average, the B. A “correlation probe”
deg?g?gﬂg;ggﬁgsggmal at the wall are, upon ensemble In order to characterize the fluctuation statistics of the

average, equivalent to a vortex doublet sheet. In the Come{{asultmg flow, we design a *numerical p“’b‘? conS|st!ng of
of inertial range problems, we conceive of this sheed its annXn square array of measurement locations that is to be

partitiong as retaining thin-sheet character during subse—Sltuated within a square with sides of lengthThis probe is

guent evolution. As such a sheet disintegrates due to visco%g Ee placed at an arbitrary position within the ensemble
diffusion, the resulting fragments retain their identity as dou- ISK. 2

blet sheets, irrespective of their spatial scale. The evolution At each .O.f these” “subprobe” array Iocanons{'denote.d
of an ensemble of such fragments has a distinct :seh‘—affinQy the p03|t|or_1 vector) yve,measure_, at a particular time
property (described in Sec. IV B belowWe associate this ;tep, the veloc!ty fluctuation (r), relative to the 'OC"?" mean
ensemble with the submacroscopic fluctuation field of zaf'eld u(r) (V.Vh'Ch we calcula.te as an accum_ulatlng mean
fluid. over preceding stepsEach pairwise nonrepeating combina-
tion of locations is considered in turn, establishing an en-
semble of;n?(n?+ 1) evaluations of a two-point spatial cor-
Il. SOURCE OF VELOCITY FLUCTUATION relation u’(r)-u’(r+p). We consider the fluctuation
A. Unbounded ensemble of doublet sheets components projected onto the direction of the separation

vectorp to form a longitudinal component of fluctuatimﬁ ,

We have explamgd that tangential |mpulsg created at 4nd onto a direction orthogonal to this, to form a transverse
boundarydD, taken in ensemble, can be considered to be A omponent’ . We sort these in ascending value of the sepa-
vortex doublet sheet coincident with the wall. This sheet will P L g P

be subject to diffusive transport, a process that can be mo ation variablep=|p|, _and an _en;emble average Is formed_
eled numerically by partitioning the doublet sheet into an rom thesg to dete_rmme longitudinal and transverse covari-
assembly of contiguous patches each characterized by spatf%ﬁce functions defined by
!length scalen. The” paramete_h_ may be chosen to reflect a F”(p):(u”’(r) . uH’(r+p)>
roughness length” of the originating surface, or in the case
of a smooth surface, it may be rationally chosen to be of
order Re ! (see Ref[3]). The segments subsequently form aand
growing ensemble of elements embedded in the flow interior.
These constitute aN-body problem governed by a dipole-
dipole interaction field. The interaction of a system of sheets
arbitrarily oriented with respect to each other can be ex-
pressed by coordinate rotations in space. Each element of thghe symbols ) denote spatial ensemble average, i.e., for a
ensemble moves in the velocity field collectively induced bydiscrete set of evamaﬂons{a(j)} of a continuum field we
the remainingN—1 other elements. The elements continuewould define
to be subjected to viscous diffusion in the flow interior; the
ensemble is thus dissipatif@nd is without external forc- L
ing). . :

The ensemble of interacting elements reflects the nonlin- ()= lim P Z all.
ear character of fluid flow. As each element moves in the
field induced collectively by the ensemble, its own position
relative to this ensemble changes; the dipolar interactiohn the context of numerical or physical measurements, this
field (as measured at a fixed poinvhich is contributed to average is approximated by truncation.
the flow by a particular element, evolves over time. Over the Here, we have assumed isotropy in the flow, i.e., cross
time, an evolving fluctuation field at this point can be formedcovariance is neglected. The validity of this assumption can

' (p)=(ui(r)-ui(r+p)).
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be examined by evaluating the corresponding cross covari;.) In the context of real flows the elements {of;} may

ance function defined by derive from an originating surface characterized by a spatial
spectrum of roughness scales. Moreover a sheet fragment
Lerosdp) =(ui () -uj(r+p)+uj(r)-u(r+p)). typically becomes stretched in the stream, and it can fold,

implying an evolution in scale. Therefore, we can expect an
interior ensemble of doublet sheets to consist in a variety of
length scales.

The energy spectrum to be associated with a three- Qur object is to fashion within such a Lagrangian con-
dimensional flow can be calculated from the three-struction the conditions of inertial range turbulence. We un-
dimensional Fourier transform of the covarianc€p). By  derstand this, in kinematical terms, to be a flow regime in
virtue of the isotropy of the model, this transform simplifies which diffusive displacements and inertial displacements of

C. Energy and structure

to a doublet element are comparable in magnit(aer a com-
mon time intervaldt). Consider an element of lengitt a

1(= . regime where such displacements are comparable can be de-
E(K)= ;fo pKI'(p)sinKpdp, 3D termined by equating a stochastic displacement

=\/2dt/Re (which models viscous diffusion through random
whereK represents wave number. Equati@yl) is a mani- walks) to the advective displacement determined by Egs.
festation of the Wiener-Khinchin relationship. (22) and (23) in Ref.[3]. This leads to the relationship be-
The second-order longitudinal structure funct®fp) is  tween Reynolds number and sheet length parameter reported
formed by calculating at each probe location the product? Ref.[3], namely,
[u’'(r)—u’(r+p)]- p, wherep is the unit vector in the sepa- Re~O(\"1). (3.5
ration direction; this quantity is squared and then ensemble

averaged. A similar calculation can be carried out for thel he flow regime characterized in this way lies at a transition
transverse case. between flow in which viscous diffusion dominates the kine-

In the particular circumstances that we have describematics’ and one in which inertial forces dominate. We appre-
(i.e., isotropy, stationarity, low fluctuation intensity, etc. ciate from Eq.(3.5) that the Reynolds number we associate

physical experiment shows that there exist particular range\é"th this transition(and consequently the associated diffusiv-

of the independent variablgsandK for which the functions 'Y) iS scale dependent.

T : . We can attach to\ the role of reference length in the
d E(K hibit I -l relationships. . .
gi)(ggifiiglly t(he)reeé(arl1 (Iexissltn;pr(;nzz\l,;)ef:)ra\),vvhich 'onships definition of Reynolds number. Thus in the case of an en-

semble of uniform scale, we consider /', to correspond

S,(p)xp??® (3.2) '2:03 g) rt(ra];;rtesentative eddy scale. We infer from E§s4) and
and a range oK such that
14
E(K)xK 553 3.3 <U'2>1’2~O(F) (3.6

The indices “2/3" and “—5/3" are often described as the 4t the transitional flow regime. To understand this relation-
Kolmogorov-Obukhov[1,2] exponents. Obukhov demon- ship let us conceive of a flow with a broad range of velocity
strated that the relationshif8.3 is consistent with Eq. fiyctuations. Some of these may vary slowly so we can char-
(3.2—see also chap. 4 of Fris¢hl]. The regime implied by  acterize these variations as nonstochastic in appearéhiee.
these power-law relationships is the “inertial range” of tur- assyme these will not contribute to correlation statistia.
bulence. The evidence of these simple dependences acrosgnatively, some fluctuations will be of sufficiently high fre-
variety of phenomena of varying scale and context, is congyency, that they are submerged in a background of purely
sistent with a view that these ranges are, in a specific sensgiffysjve fluctuations. They contribute uncorrelated random

“universal” (see Fig. 2.4 in Ref18]). noise to a measurement of covariance. We identify the range
of fluctuations consistent with Eq.3.6) as precisely the
D. Kinematical definition of inertial range range that contributes to the covariance for a prescribed eddy
A Reynolds number appropriate to turbulence measureSCa/€A. _
ments can be defined as Consider a doublet ensemble characterized by the pres-
ence of two scalek; and\,. We associate with each scale a
Re=/o(u'2)Yy (3.4  distinct transition regime, and a corresponding Reynolds

number. If we consider these two subensembles to interpen-

where the reference lengih, represents the upper spatial etrate and consider that each constituent subensemble is en-
scale of eddies in the inertial rang@)’ %)Y/ represents the gaged in a statistically independent stochastic pro¢ess
rms value of velocity fluctuation; and is kinematic viscos-  with distinct Reynolds numbgrthen the covariance of the
ity (this is discussed, for example, in Sec. 7.3 of R&t]). composite ensemble can be developed from the ensemble

In the present paper, we are considering an evolving enaverage of the two constituent covariances. In the following,
semble of doublet sheet elements each “carrying” a lengthwe will generalize this approach to embrace correlation for
dimension.(The ith element will have a length denoted as the discrete spectrum of scal@s;}.
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FIG. 1. Sample-averaged covariance functions for a single scale Iog10 K

A =0.002; the corresponding cross covariance is illustrated below.
FIG. 2. Doubly logarithmic plot of energy spectra calculated
IV. NUMERICAL RESULTS: ENERGY SPECTRUM from I'(p) shown in Fig. 1. These spectra relate to an ensemble

A. Spectrum for single scale consisting of only a single scali®,=0.002.

To make a numerical demonstration of the foregoing ac-

count of turbulence statistics, we consider a disk of radiusdete.rmlneOI by applylng_ a simple nu_mencal quadralame-
R=0.2; we prescribe a Reynolds number=R&00, which pezium rule for nonequispaced partitjaiw a truncated ver-

determines a sheet segment length 0.002~0(1/Re). In sion of the ir_1tegra[3.1). TheK r_egimes for .bOth transv_erse
effect this specifies a lower bound to the spatial scale th nd longitudinal spec_tra_for which the gradlent app_roxmates
can be resolved in the present exercise. We hence define eT\r/]egu; :aignc?;ec:fn?éc?rtﬁgsbgh\;?;tg::iggghbe d tlr']r;isé' linear
array of probe locations with a minimum separation of order 1€ app . 9 ~d Dy

\: we consider 4545 locations within a square of side gra_dlents is typical Qf a range of numerical parameter.s,
=0.06. We place replicas of this probe at ten locations in th which is to say the linear regime of the energy spectra in

disk. Into this disk we introduce & distribution bi= 1000 109109 coordinates is typical. One has to ensure, however,

sheet segments that are randomly positioned, and each hthsat the prescription of probe parametérsandn are such

- 71 . . . . .
random orientation. This ensemble is allowed to interact with ath O(Ln. ) in order to ach|eve S|gn|f|cant correlation.
. o . . e . Also, the choice of ensemble sikeand radiusk (and hence
itself; it is also subject to viscous diffusion, modeled numeri-"_~ : o
cally using a random-walk representation. We allow this en_partlcle density should be made so that the fluctuation in-

: . . tensity is less than 10%.
semble of elements to evolve for ten steps to establish a -
We note the spectra in Fig. 2 conform to a power-law

mean flow field through temporal averag@he present ! . . .
choice ofN leads to a fluctuation intensity of about 10%. structure only over a relatively small interval in the neigh-
Each probe array gives rise to 2 049 300 evaluations op%thOd .Of LQQOK_Z'ZF'.TTe doubrl]et e”Sf?T“b'? we are conf—
the correlationu’(r)-u’(r+p). These are sorted into 20 sidering in this example Is “monochrome,”1.e., it Consists o
: a single spatial scale. In physically measured flows such a

nonuniformly spaced class intervals pivalues; the widths uniformity of eddy scale is very unlikely to exist. The model

of these mter\{als are chosen S0 that there are an equal NUILY inertial range turbulence that underlies Kolmogorov scal-
ber of evaluations represented in each. An ensemble averagneg analysis is that of an ensemble of eddies of differing

is taken over each interval to develop the four functions . : .
Ty(p), T.(p), Terosdp), and Sy(p). These are, in tum, scale, extending from a maximuftthe integral scaledown

sample averaged over the ten probe locations in the flow. Thto a minimum(dissipation scale To understand the covari-
P 9 P . nce associated with a spatial range of scales, we now gen-

class intervals .for this example |mp!y thak,=0.003 and. eralize the present single-scale model to embrace a discrete
Pmax= 0.05. This bandwidth determines the correspondmgSpectrum

range ofK values to be determined through E&.1). We
expect this range to fall in the interval 4K <1000.
Figure 1 illustrates the covariances for this numerical cal-
culation, averaged over the ten location samp(€kese co- An advantage of having developed the present particle
variance curves can be compared to experimental measurstodel of “turbulence” is that it allows us to investigate how
ments, for example see Figs. 5.12 and 5.13 in Re&f].) The  such a model scales with refined model resolution. We can
lower plot in Fig. 1 illustrates the associated cross covariconstruct a hierarchy of self-similar models of successively
ance. smaller scale and understand from the kinematics of this the
The energy spectrE(K) associated with the covariances underlying scaling properties. If all lengthigcluding the
of Fig. 1 are illustrated in the log-log plot of Fig. 2; these aresegment length\) are linearly transformed by a common

B. Self-affinity
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scale factor, we arrive at a spatially scaled replica of our
original doublet ensemble. Furthermore, if we scale time by
this same factor, the advective kinematics will itself be a
scaled replica of the original advection. Finally, if we impose
Re~O(\ 1), the scaling of implies an inverse scaling of
Re. The resulting random-walk displacememntsvith which

we model viscous diffusion, will constitute a scaled replica
of the original diffusion model.

We might expect from all this thdf(p) determined from
the scaled numerical experiment will replicate at smaller
scale the covariance function determined from the “full-
scale” experiment, i.e., ip, \, L, R, etc., are scaled by a
factor k (such thatk<<1) so thatp’=kp, we might expect

1 1 1 !
'p) tp b,e In some SenS(? Self-SImllal’.fdp ). We recall FIG. 3. Ensemble-averaged covariariteick solid line deter-
von Kaman and Howarth's[20] analysis of the decay of . :
. . . . . mined from a family of 17 scales.
isotropic turbulence, in which they make the assumption that

the correlation function preserves its shape under Spatl?Jartition this into two equally spaced subintervals and con-

sc_aling. On the t_)asis of t_he present di_scugsion, We SUQQegct from this three covariance functions encompassing the
this assumption finds a rational justification in the kinematics domains: p € [0,0.006, pe[0,0.033, and pe[0,0.06

. . L. P
of impulse. Note thgt wher(_aas the '”depe.”def!t vana_bb Each subinterval can again be bisected to determine two fur-
scaled(and the entire spatial model and its kinematics ar

trict if-simil der thi linathe statistical _38her subintervals, and from this, a total of five covariance
strictly sefl-simiar under this sca ingthe s atistical covarl- ¢, hetions can be constructed. The procedure can be repeated
ance functionl’(p) continues to span the intervgd,1] for

I I | his refl h it I 1 .dto determine successively nine functions, seventeen func-
all p atall sca es. This reflects the mu tifractal nature of flui tions, etc. Afterj such successive bisections we determine a
turbulence, which has been described by Mandelp2at.

. . : CE self-affine hierarchy of 2+ 1 functions. Figure 3 illustrates
We characterize the relationship between the statistical Me3Ae case of 17 covariance functiof®r the longitudinal

sures relating to such scaled models as that of “self-affinity.”case determined in this way. These covariances are gener-
ated by assuming they are self-affine to the calcul&tge)
C. Hierarchy of scales determined from the numerical probe for the interyal
In Sec. IV A, we considered an ensemble characterized by [0.0,0.08, this case serving as a “template.” The thick
a single scale X=0.002). This choice was arbitrary and solid line represents the ensemble average of these 17 curves,

similar results would be obtained for any choicexofin the ~ namely,

T'(p)

0.04 0.05

case of an ensemble consisting of two “subensemblas” ( 17
=\, and A =N\,, respectively, we define a covariance by (1( )>:i 2 T.(p)
assuming that the fluctuations derived from the scaled nu- P 1775 P

merical experiments described in Sec. IV B are statistically
independent of each other. This derives from the fact that, We pursue this exercise fgr=9 successive bisections
although their kinematics are self-affine, the time scale andbounded byp €[0,0.000] andp €[0,0.06) and substitute
the diffusion coefficients of the scaled processes are nevethe resulting ensemble-averaged covarigiaseraged over a
theless distinct. The covariance is formed by an ensembldiierarchy of 513 scalg¢énto the transforn(3.1) to obtain the
averaging exercise over all scales present; by virtue of thenergy spectrum illustrated in Fig. 4. The linear regression
statistical independence, we organize this summation proce$gsrmed on the interval logKe[2.9,3.9 has a slope of
into two parts: we separately form the covariance associated 1.66= 0.06 that we offer as an encouraging approximation
with \; (denoting this ad’;) and then form that foi,  to the Kolmogorov-Obukhov exponent. We note the “Span-
(denotedI',). We hence form the ensemble average oveish moss” effect beyond th& range corresponding to the
these two contributions: namely, we form(I'(p)) interval of averaging in Fig. 4; the phenomenon is discussed
=1[T1(p)+Ts(p)]. In effect, we are forming the ensemble in a more general context on page 75 of Rell]. Note also
average of two ensemble averages. As a measurement ex#rat as the foregoing bisection process is repeated for in-
cise, we could adjust the parameteof the correlation probe creasingly largg, we approach, in a pointwise sense, the
to determine in turd’; andT',. Alternatively, we exploit the condition of scale continuum.
self-affinity implied by the kinematics and conceiveldf as
a scaled image of ;. V. NUMERICAL RESULTS: SECOND-ORDER STRUCTURE

The foregoing strategy can be generalized in an obvious FUNCTION
way. We consider a fluid to consist of a discrete spectrum of
scales, such that this is captured by a range of probe dimen-
sions in the intervdlL ,in,L max. COnsider an ensemble con-  The numerical probe described in Sec. 1l A can be used
sisting of n interpenetrating “subensembles,” and considerto determine numerically the structure functions for the en-
specifically the interval betweem=0.006 andp=0.06. We  sembles described in Secs. IV A and IV B. Figure 5 illus-

A. Two scales in isolation
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4 FIG. 4. Energy spectrum determined from the
ensemble average of a family of 513 scalgs (
=9).

-7F  (regress. = —-1.66+ 0.06) E

—8 1 1 1
1 2 3 4 5

Iog10 K

trates(in log-log formaj the longitudinal ©) and transverse We consider a family of subscalesp €[0,0.006, p

(@) second-order structure function for these respective=[0,0.0033, etc) and from this form a sequence,
scales taken in isolation. One notes thapaapproaches its  SiV(p) S5 (p), etc. We hence calculate the ensemble aver-
lower spatial boundi.e., \), I'(p) appears to conform as- age(S,(p)). Figure &a) illustrates a family of functions cor-
ymptotically to a power-law exponent of “4/3,” which is responding to a self-affine hierarchy of scales; the solid thick
indicated for each curve in Fig. 5. We note that, as in the caskne is the ensemble average of this hierarchy. This average is
of the energy spectrum illustrated in Fig. 2, the region ovelplotted in log-log coordinates in Fig(l6), with the 2/3 linear
which a linear power-law exponent can be determined isslope indicated. Fop approaching the lower limit of scales
relatively small; this again relates to the fact that we arerepresented in the ensemble, the 4/3 slope is also indicated.
considering two models in each of which a single scale is |t is interesting to note that we can attach some physical
considered in isolation, i.e., we are considering two isolategignificance to the maximum point of intersection $ p)
ensembles each with uniform scale. We generalize this situxith the p axis in the family of curves illustrated in Fig(&.

ation in the following section. Let us characterize this value pf as the maximum eddy
size), in the ensemble, and write,=maxp.}. Figure &b)
B. Hierarchy of scales illustrates how the parametay, delimits a lower bound to
For a given\, there is, in the present method, a numerical 3
.= . . x 10
lower limit to the value ofp for which we can estimate . . .
S,(p), namely, the scale of the sheet segment itself. It is 10p |« A, (maximum eddy size)
therefore difficult to understand unambiguously the
asymptotic structure o&,(p) for vanishingp. To generalize 8
the present procedure to include an ensemble average over a
family of scales(as discussed in Sec. IV C for the case of 56
covariancg we need to impose on this problem some under- '
standing of this point. We make the assumption that the 4
structure associated with very small scaledative to\) is
not affected by the structure at a large scale relativie.tm 2
practical terms, we extrapolate the structure function curve a
(for fixed \) until its intersection point with the axis (the 0 . s - .
0 0.01 0.02 0.03 0.04 0.05

point p, say), and forp<<p, we takeS,(p) to be zero for this
scale. On this basis we exploit self-affinity to extend the

range ofp for which we can describe a structure function. :
I
I integral
&~ I | scale
) I | regime
w [ [
=3 I I
2 [ [
S I I
35l dissipation | inertial |
-3 scale regime | regime |
(regress. = 0.718+ 0.02) : : b
-4 1 1
-1 -35 -3 -25 -2 -15
logo P
FIG. 5. Second-order structure functions for the transve@p ( FIG. 6. (a) Structure functions associated with a family of
and longitudinal Q) cases, for two individual scales each taken in scales, and their ensemble averétpck solid ling; and(b) doubly
isolation,\ =0.0002 anch =0.002, respectively. logarithmic plot of the latter average.
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the scale of inertial range turbulence, i.e., a regime approxirameters such that the constituents of this average form a
mated by a 2/3 power-law exponent consistent with that deself-affine hierarchy of statistically independent random pro-
termined by Kolmogorov. We also indicate in Figbpthe cesses in the neighborhood of a kinematical version of the
integral scale regime, and the dissipation scale regime connertial range. With this procedure we determine an approxi-
sistent with this interpretation of,. Note that in the inviscid mation to the Kolmogorov-Obukhov exponents.

limit, the scaling described in Sec. Ill D implies the delimit-  In developing the energy power-law spectrum illustrated
ing line labeled\ in Fig. 6(b) will proceed to the left of the I Fig. 4, we have not invoked the limit of vanishing viscos-

diagram. As the inviscid limit is approached, the inertial re-1t: I-€., we have not considered the limit-0. The “—5/3"
gime is extended towards smaller scales. energy exponent is consistent with that determined by Kol-

; P ; 1] and Obukho\ 2] (but note also that neither of
The sloping dashed line in Fig(l® represents the linear mogorov| . N ;
regression in the interval lagpe[ —3.0,— 2.0], which has a these authors invokes the limit—0). This spectrum also

slope of 0.718 0.02. It is interesting to note that this latter corresponds to that which is widely measured experimen-

value approximates the value of 0.7 for the power-law ex O_tally. On the other hand, an exclusively“5/3” exponent is
PP ' P PO%ot consistent with the energy spectrum determined by

nent that has been determined experimentally by a number raichnan[8] for two-dimensional flow. The latter result de-

authors—for example, see Fig. 3 of REZ2]. In this context . S . 7
it is relevant to notg a commegnt of Vie%eﬂ]RS] He remarks pends on imposing inviscid flow constraints, which is to say
: it depends on the zero-viscosity limit. These constraints are,

that if an intermittency correctiotias developed in chap. X ; -
N15 of Ref.[21]) is applied to a Lagrangian structure func- S:Jtlirgﬁly, the constancy of energy implying the spectral con

tion determined from a 4/3 scaling late., a Richardson

law), then the power-law exponent f&(p) can be deter- o

mined to be 0.72. We emphasize that the calculations leading f E(K)dK=const
to Fig. 6b) do not derive from such a prescribed scaling law 0
(i.e., we do not impose a model of superdiffusivity onto the . . .
kinematicg. Rather, the power-law exponents we calculateand the constancy of enstrophy along stream lines implying
derive from the scaling properti¢and presumably the inter- "

mittency) intrinsic to a simple Lagrangian representation of f K2E(K)dK=const.

the equation of motion Ed2.2) in which viscous diffusion is 0

modeled, in a standard way, through normally distributed ] ] ) .
Brownian motions. The results of this latter analysis are widely taken as evi-

dence that such two-dimensional models cannot represent the
observed energy spectrum of real three-dimensional turbu-
lence. In the context of our alternative impulse-based model,
We offer here a simple constitutiyer material answer to  we suggest the present two-dimensional model does in fact
what has been an enduring question: how is turbulence rexpproximate the energy spectrum observed in three-
lated to the equations of motion? Our answer is one that botdimensional turbulence.
explains the physical origin of turbulence at a wall, and The notion that incompressible viscous fluid consists, in
which accounts for the appearance of two power-law signapart, of an interpenetrating ensemble of doublet vortex ele-
tures in experimental measurements of velocity fluctuationments derives from the understanding of the interaction of a
We demonstrate this by means of computational experimentgscous fluid with a boundary that is described in Héfl.
that exploit the ensemble kinematics of doublet sheet eleAfter “long time” has elapsed, such elements may eventu-
ments. ally lose deterministic memory of the conditions of their cre-
The notion that a surface of material discontinuity in aation. The spatial scale and orientation of an individual ele-
viscous flow constitutes a generator for fluid impulse is not anent will evolve along with its position according to Eq.
phenomenological hypothesis as such. Rather, it derives in @.2); it will be subjected to a regime of stretching and dif-
simple way from the implication of force equilibrium at an fusion. However, what will be preserved in this process, is
interface. An ensemble of created doublghsthe absence of the dipolar structure of the compactly supported impulse
viscosity) is a discrete Hamiltonian system. Our conjecture isdensity field. It is not clear whether this local dipolar contri-
that the material substructure also of viscous flow is reprebution to the flow is expressed in the solution to a randomly-
sented by such an ensemble and that Kuz'min’s decomposferced Navier-Stokes equation when this problem is posed in
tion Eq. (2.1 is the constitutive relationship that discloses two-dimensional unbounded space. Since we want to attach
this structure.(This conjecture is not new: it is essentially to an impulse doublet sheet the significance of a physical
that which animates the discussion in Réfis4,24).) dipole source, we probably require either to describe the cre-
A fluid may consist of a range of characteristic eddyation of these dipole&hrough a time-evolutionary boundary
scales, and we explore this by introducing a numerical probgalue problem, sgyor to postulate their existencm a state-
that “measures” the covariance for a scale determined by thenent of initial data, for examp)eThis is to emphasize that,
minimum separation of probe sublocations. The covariancé incompressible flow, we conceive turbulence to originate
associated with a variety of scales can be constructedt a boundary.
through an ensemble average over the covariances associatedThe Hodge decomposition expressed in Exjl) reflects
with the constituent scales. We choose model and flow paa mathematical property of solenoidal fields, in general. We

VI. CONCLUSIONS
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infer from this that the decompositiof.e., into local and facts that determines the scaling properties of inertial range
nonlocal constitueniswhich is made explicit in the impulse turbulence. . .
formulation, will be implicit in the evolution of momentum  The numerical evidence of the present paper may make

or vorticity. In the present paper, we hypothesize that turbuSOmMe contribution to a continuing debate about the role of
viscosity in turbulence. Opinion divides on whether the prop-

lence results from the imparting of impulse into a viscous" ™. : L P
flow at a boundary. For this reason the impulse formulatior€ties of turbulent flow derive fundamentally from inviscid

of the problem has a natural advantage for us, not only in thgyr\llsénrlwcostg:hcgp\(,evrhvgﬁe\,;ssefml?f\%g}a scale hierarchy, we are

equation of motion, but also in the direct way in which the summing over particle models each characterized by a
boundary conditions can be expressed. However it may alseqgjed” Reynolds number. This recalls the argument of
be possible to cast the present model of impulse creation iBarenblattet al. [26] that the proportionality factors in Egs.
terms of primitive variables or in terms of vorticity. To do (3.2) or (3.3) are Reynolds number dependent if Re is suffi-
this we would require boundary conditions for primitive ciently removed from its inviscid asymptote. In the context
variables(specifically for the pressuyend for vorticity that  of the present Lagrangian model, any characterization of a
correspond to our treatment of the conditionsdodescribed  system of interpenetrating ensembles of differing scale by a
in Sec. Il. We suggest such conditions for pressure and vosingleReynolds number will at best serve to approximate the
ticity could reasonably be characterized as “natural condicondition of strict self-affinity. The quality of this approxi-
tions” in the sense they would derive from the implications mation may improve in the limit of vanishing viscosity; it
of Newton’s third law at a boundary. should be possible to exploit the present model to investigate
The Lagrangian impulse sheet formulation may providethis conjecture numerically.
further physical insight into the relationship between New- We accept that some aspects of turbulence phenomena
ton’s laws and the phenomenology of turbulence. For exmay require a more ambitious three-dimensional treatment,
ample, we note in Sec. lll D that, given an ensemble of douas well as requiring time differentiation of turbulence mea-
blet sheets with uniform length scale, the Reynolds sures. To relate the present material model to the accepted
number to be associated with transition from flow dominatedheories of turbulencée.g., the theory of Kolmogorop] or
by diffusion, to flow dominated by advection, is given by its elaboration by Kraichnaf8] and others the present
Re~O(A~1). Moreover in Sec. IV B, we note the scaling of model should be pursued into the limit of vanishing viscos-
Reynolds number that ensures the kinematical self-affinity ofty. The underlying model can be naturally refined for this
viscous flow across a range of scales is also given by Rpurpose, and generalized into three dimensisee Refs.
~0O(N"1). We suggest that it is the conjunction of these two[27,28)).
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