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Energy and structure of inertial range turbulence deduced from an evolution of fluid impulse

D. M. Summers
School of Mathematics and Statistics, Napier University, 10 Colinton Road, Edinburgh EH10 5DT, Scotland

~Received 7 February 2001; revised manuscript received 7 December 2001; published 5 March 2002!

We explore numerically a very simple idea that may provide a material explanation for inertial range
turbulence. We base a Lagrangian model of viscous incompressible fluid flow on an evolving ensemble of
vortex doublet sheets. Initially these are randomly oriented and randomly distributed within a disk in two-
dimensional space. These sheets are then actively transported~in two dimensions! according to the Oseledets
equation of motion for fluid impulse. The mutual interaction of these sheets, and their diffusion, establishes a
velocity fluctuation field. In a specific sense this evolution is self-affine, and we exploit this property to
calculate standard statistical measures for the fluctuation field. We determine from this simple model the
second-order structure function and the energy spectrum of inertial range turbulence.
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I. INTRODUCTION

A complete mathematical theory of turbulence deduc
from equations of motion has proved elusive. Although t
bulence is observed to be, at small scale, a complex flu
ating velocity field, flow regimes characterized by the ‘‘ine
tial range’’ of turbulence appear to exhibit strikingly simp
statistical properties. For example, one statistical mea
~the second-order structure function! assumes in this regim
a r 2/3 dependence (r being the separation between two co
relation points!. The 2/3 power-law exponent is consiste
with the prediction—based on dimensional analysis
determined by Kolmogorov@1# and Obukhov@2#. The ques-
tion of how such scale relationships arise from the equati
of motion is a long-standing preoccupation of research in
area.

In an experimental setting, turbulence is typically gen
ated by passing fluid over a solid surface. Turbulence ge
ated at such boundaries becomes subsequently transp
into the flow interior. The present paper is motivated by
speculative identification of such turbulence creation w
the creation of fluid impulse at a solid boundary as descri
in Refs. @3–5#. In particular, a vortex doublet sheet is co
tinuously created at a solid boundary in response to visc
boundary conditions. This sheet fragments and evol
through viscous diffusion and through advection~accompa-
nied by rotation and stretching! into the flow interior accord-
ing to the equation of motion introduced by Oseledets@6#.
~The physical interpretation of this as an equation of mot
for fluid impulse density was introduced by Buttke@7#.! The
elements of this developing ensemble of doublet fragme
induce a local contribution to the velocity. This induced co
tribution is influenced by the fact that the trajectories of t
inducing doublet fragments have, in part, a stochastic c
acter: they constitute a system of advecting and diffus
submacroscopic sources. The effect of this is to establish
ensemble, a velocity fluctuation field.

In the following, we give a brief Lagrangian account
this generation of impulse at a wall. The character of
fluctuation field that develops in the immediate neighb
hood of the wall has been discussed elsewhere~see Ref.@5#!.
As time progresses the created elements of impulse ev
1063-651X/2002/65~3!/036314~9!/$20.00 65 0363
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from the near-wall regime into the flow interior; in th
present paper, we investigate numerically the statistical pr
erties of the associated fluctuations in such an interior
gime. To do this we conceive of an ensemble of doub
elements randomly distributed within a compact subdom
of unbounded space. The ensemble represents an unfo
decaying system. In the present paper, we explore this m
for two-dimensional geometry. We calculate the two-po
covariance of the resulting velocity fluctuation field at a p
ticular instant during this evolution.

The foregoing material explanation of the process of t
bulence differs in a fundamental way from that associa
with the Kolmogorov-Obukhov theory@1,2# or with its
elaboration for two dimensions described by Kraichnan@8#
~see also Ref.@9# for a discussion of Batchelor’s contributio
to this subject!. We do not conceive, explicitly, of a cascad
process, nor do we invoke the limit of infinite Reynold
number~i.e., we do not associate inertial range turbulen
with the zero-viscosity limit!. In Sec. III D, we argue that the
inertial range is characterized by the condition that
expressed in terms of the kinematics of impulse doub
sheets—diffusive displacement is comparable in magnit
to advective displacement. Thus, we are in a regime tha
far from flow constrained by inviscid constants of motio
We will show that, in this regime, the kinematics satisfies
self-affine property and that it is this property that leads
the power-law exponents predicted by Kolmogorov.

The simple model we present here depends fundamen
on the Brownian motion of fragments of impulse densi
Thus, we are describing a viscous mechanism. We recall
remark of Kraichnan@10# to the effect that the Kolmogorov
Obukhov power-law exponents are experimentally obser
far from the high Reynolds number range of validity w
usually associate with Kolmogorov theory. For examp
note Figs. 5.7 or 5.8 in Frisch@11#. The present model can
offer an explanation for this unexpectedly extensive spec
range of the power laws.

II. EVOLUTION OF IMPULSE

A representation of flow in terms of fluid impulse
achieved by postulating a simple ‘‘constitutive relationshi
©2002 The American Physical Society14-1
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D. M. SUMMERS PHYSICAL REVIEW E 65 036314
to accompany the momentum equation; this is, namely
decomposition~first proposed by Kuz’min@12#! through
which the velocity field of an incompressible fluid is e
pressed as the sum of a ‘‘local field’’~which is the density of
fluid impulse!, and of a ‘‘nonlocal field.’’ This postulate is
made in a manner analogous to the postulating of cons
tive relationships to accompany Maxwell’s equations in el
tromagnetism. Kuz’min’s decomposition can be stated as

u5m1gradf, ~2.1!

where u is velocity ~with vanishing divergence!; m is im-
pulse density~whose curl and divergence are both nonva
ishing!; and f is a scalar field~the curl of gradf vanishes
identically!. The relationship~2.1! can be formally classed a
a Hodge decomposition ofm, which is to say a decompos
tion into a solenoidal field (u), and an irrotational field
(gradf).

Oseledets@6# determined that if Eq.~2.1! is substituted
into the Navier-Stokes equation~and if, as Russo and
Smereka@13# observe, a particular choice of gauge is mad!
an equation of motion form is obtained

Dm/Dt52~“u!Tm1Re21 Dm ~2.2!

~with an accompanying decoupled equation forf). Re is the
Reynolds number. The operatorD/Dt is the time derivative
along particle trajectories;D is the Laplacian operator; an
the i j element of the matrix (“u)T is ]uj /]xi for a velocity
field u5(u1 ,u2 ,u3) at a point (x1 ,x2 ,x3) in three-
dimensional space. The first term on the right hand side
Eq. ~2.2! represents the deformation and rotation of a ma
rial element of the fieldm as it evolves in the stream. Ou
choice of gauge is made in order to achieve the separated
~2.2! that we require for a Lagrangian model. This equat
is consistent with a Hamiltonian form@6#; exploiting this
fact, Buttke@7# and Buttke and Chorin@14# demonstrate tha
numerical models of inviscid three-dimensional fluid moti
can be based on tracking elements of the impulse den
variablem as these evolve in the flow. Lagrangian mod
based on impulse have been pursued in a number of invi
contexts—for example, in the modeling of the motion of
immersed membrane@15,16#. We note too the model of in
viscid turbulence developed by Smereka@17# that is based on
the Euler form of Eq.~2.2!.

Since we attach tom a material interpretation, Eq.~2.2!
can be understood as an equation of motion for a field
has compact support, in fact analogous to the evolution
source density field in a magnetic material. We conceive i
be comprised of an ensemble of vortex dipoles. We can
derstand the nonlocal field gradf as a volume~or ensemble!
weighted average ofm. The implication of Eq.~2.1! is that
the two fieldsm and gradf ~which are, respectively, loca
and nonlocal! interpenetrate, and in summation, constitu
the divergence-free velocity fieldu.

To understand the physical origin ofm we look to the
boundaries of the flow. When a moving viscous fluid is
contact with a solid wall, we impose two boundary con
tions there. The fact that the fluid does not penetrate the
is expressed through an impermeability condition: the n
03631
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mal component of the velocity field vanishes at the bounda
Also, we consider the fluid to adhere at the wall, implying
no-slip condition there. These two conditions are expres
as the union on]D of

u•n50, ~2.3a!

u•s50, ~2.3b!

wheren is a unit vector normal to]D ands is a unit vector
tangential to]D. Substituting Eq.~2.1! into Eqs.~2.3!, we
infer the following conditions to be satisfied bym at the
wall,

m•n52]f/]n, ~2.4a!

m•s52]f/]s. ~2.4b!

Identifying m as an impulse density has a natural sign
cance at such a boundary. Impulse is a time integral of fo
taken in the limit of vanishing time interval. We will unde
stand Eqs.~2.4! as relationships that express the impu
imparted to the flow at an instant of time, in response to
impinging velocity field whose potential is given byf. We
apply the divergence operator to Eq.~2.1! and noting that
div u50 for incompressible flow, we deduce the Poiss
equation

Df52div m. ~2.5!

If we constrain impulse to be normal at the wall, th
boundary condition~2.4b! implies the condition]f/]s50
there. This condition ensures the existence of a solu
~unique to an additive constant! to the differential equation
~2.5!; the vector gradf is therefore uniquely determined an
the Kuz’min decomposition~2.1! will also be uniquely de-
termined for such a case. We refer now to the first equa
in Eq. ~2.4!, namely, m•n52]f/]n52n•gradf. At a
fixed time (to) we consider the boundary]D to lie outside
the support of previously created impulse~i.e., created int
,to). We observe that if we can solve~2.5! to deduce
gradf, then we can proceed to calculate that normal impu
~imparted to the flow at]D) which is required to effect im-
permeability, i.e., we can calculatem there. The support of
this created field will necessarily be that of a thin sheet
incident with the wall@it therefore does not contribute to th
right hand side of Eq.~2.5! at t5to#. This field subsequently
evolves from the wall into the fluid interior over the follow
ing time interval according to Eq.~2.2!.

The impermeability condition need not occupy a priv
leged position: we can equally constrain impulse to be t
gential at the wall. In this case the first equation in Eq.~2.4!
implies the boundary condition]f/]n50 on ]D. The solu-
tion of Eq. ~2.5!, consistent with this condition, determine
an alternative, and complementary functionf, with a vector
function gradf again uniquely determined. We deduce th
the impulse on]D required to effect the no-slip condition i
given bym•s52s•gradf.

We have, in effect, decomposed the viscous bound
conditions into two complementary modes of impulse c
4-2
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ENERGY AND STRUCTURE OF INERTIAL RANGE . . . PHYSICAL REVIEW E 65 036314
ation. In Refs.@3–5#, we describe the mode that derives fro
]f/]n50 on ]D as ‘‘Case I,’’ and that which derives from
]f/]s50 on ]D as ‘‘Case II.’’ Both these modes can occ
in superposition~see Sec. 4.2 in Ref.@5#!. Once created, suc
impulse evolves from the wall into the flow interior accor
ing to the transport equation~2.2!. We can represent thi
process as the creation, at successive instants of time, o
assembly of impulse dipoles at the wall. In both cases we
appeal to the electromagnetic analogy to understand t
physical significance~see, for example Ref.@4#!. Dipoles
created normal at the wall are equivalent to a system of v
tex loops coincident with the surface. In the near-wall regi
these elements are closely related to the separation or at
ment of flow. In two dimensions this distribution of dipole
constitutes a vortex singlet sheet. As these created ob
evolve from the wall they represent, in ensemble average
developing flow topology.

Dipoles created tangential at the wall are, upon ensem
average, equivalent to a vortex doublet sheet. In the con
of inertial range problems, we conceive of this sheet~and its
partitions! as retaining thin-sheet character during sub
quent evolution. As such a sheet disintegrates due to visc
diffusion, the resulting fragments retain their identity as do
blet sheets, irrespective of their spatial scale. The evolu
of an ensemble of such fragments has a distinct self-af
property ~described in Sec. IV B below!. We associate this
ensemble with the submacroscopic fluctuation field o
fluid.

III. SOURCE OF VELOCITY FLUCTUATION

A. Unbounded ensemble of doublet sheets

We have explained that tangential impulse created a
boundary]D, taken in ensemble, can be considered to b
vortex doublet sheet coincident with the wall. This sheet w
be subject to diffusive transport, a process that can be m
eled numerically by partitioning the doublet sheet into
assembly of contiguous patches each characterized by sp
length scalel. The parameterl may be chosen to reflect
‘‘roughness length’’ of the originating surface, or in the ca
of a smooth surface, it may be rationally chosen to be
order Re21 ~see Ref.@3#!. The segments subsequently form
growing ensemble of elements embedded in the flow inter
These constitute anN-body problem governed by a dipole
dipole interaction field. The interaction of a system of she
arbitrarily oriented with respect to each other can be
pressed by coordinate rotations in space. Each element o
ensemble moves in the velocity field collectively induced
the remainingN21 other elements. The elements contin
to be subjected to viscous diffusion in the flow interior; t
ensemble is thus dissipating~and is without external forc-
ing!.

The ensemble of interacting elements reflects the non
ear character of fluid flow. As each element moves in
field induced collectively by the ensemble, its own positi
relative to this ensemble changes; the dipolar interac
field ~as measured at a fixed point! which is contributed to
the flow by a particular element, evolves over time. Over
time, an evolving fluctuation field at this point can be form
03631
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by establishing the difference between the instantaneous
and the evolving mean field at the point.

In the present paper, we ascertain whether an ensemb
such doublet sheets can give rise to a flow with the sa
statistical signature as that found in physical turbulence
periments. We confine our attention to two specific statisti
measures of inertial range turbulence~which is to propose to
model a spatially unbounded flow that is statistically statio
ary and isotropic, and for which the fluctuation intensity
low relative to the mean velocity field!. We do this by means
of a simple two-dimensional model. We distributeN impulse
doublet sheets randomly within a disk of radiusR; each sheet
has uniform lengthl, but is randomly oriented.~Lengths are
reckoned in dimensionless units.!

B. A ‘‘correlation probe’’

In order to characterize the fluctuation statistics of t
resulting flow, we design a ‘‘numerical probe’’ consisting
an n3n square array of measurement locations that is to
situated within a square with sides of lengthL. This probe is
to be placed at an arbitrary position within the ensem
disk.

At each of thesen2 ‘‘subprobe’’ array locations~denoted
by the position vectorr ) we measure, at a particular tim
step, the velocity fluctuationu8(r ), relative to the local mean
field U(r ) ~which we calculate as an accumulating me
over preceding steps!. Each pairwise nonrepeating combin
tion of locations is considered in turn, establishing an e
semble of12 n2(n211) evaluations of a two-point spatial co
relation u8(r )•u8(r1r). We consider the fluctuation
components projected onto the direction of the separa
vectorr to form a longitudinal component of fluctuationui8 ,
and onto a direction orthogonal to this, to form a transve
componentu'8 . We sort these in ascending value of the se
ration variabler5uru, and an ensemble average is form
from these to determine longitudinal and transverse cov
ance functions defined by

G i~r!5^ui8~r !•ui8~r1r!&

and

G'~r!5^u'8 ~r !•u'8 ~r1r!&.

The symbolŝ & denote spatial ensemble average, i.e., fo
discrete set ofP evaluations$a( j )% of a continuum field we
would define

^a&5 lim
P→`

1

P (
j 51

P

a( j ).

In the context of numerical or physical measurements,
average is approximated by truncation.

Here, we have assumed isotropy in the flow, i.e., cr
covariance is neglected. The validity of this assumption c
4-3
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D. M. SUMMERS PHYSICAL REVIEW E 65 036314
be examined by evaluating the corresponding cross cov
ance function defined by

Gcross~r!5^u'8 ~r !•ui8~r1r!1ui8~r !•u'8 ~r1r!&.

C. Energy and structure

The energy spectrum to be associated with a thr
dimensional flow can be calculated from the thre
dimensional Fourier transform of the covarianceG(r). By
virtue of the isotropy of the model, this transform simplifi
to

E~K !5
1

pE0

`

rKG~r!sinKrdr, ~3.1!

whereK represents wave number. Equation~3.1! is a mani-
festation of the Wiener-Khinchin relationship.

The second-order longitudinal structure functionS2(r) is
formed by calculating at each probe location the prod

@u8(r )2u8(r1r)#•r̂, wherer̂ is the unit vector in the sepa
ration direction; this quantity is squared and then ensem
averaged. A similar calculation can be carried out for
transverse case.

In the particular circumstances that we have descri
~i.e., isotropy, stationarity, low fluctuation intensity, etc!
physical experiment shows that there exist particular ran
of the independent variablesr andK for which the functions
S2(r) and E(K) exhibit simple power-law relationships
Specifically, there can exist a range ofr for which

S2~r!}r2/3 ~3.2!

and a range ofK such that

E~K !}K25/3. ~3.3!

The indices ‘‘2/3’’ and ‘‘25/3’’ are often described as th
Kolmogorov-Obukhov @1,2# exponents. Obukhov demon
strated that the relationship~3.3! is consistent with Eq.
~3.2!—see also chap. 4 of Frisch@11#. The regime implied by
these power-law relationships is the ‘‘inertial range’’ of tu
bulence. The evidence of these simple dependences acr
variety of phenomena of varying scale and context, is c
sistent with a view that these ranges are, in a specific se
‘‘universal’’ ~see Fig. 2.4 in Ref.@18#!.

D. Kinematical definition of inertial range

A Reynolds number appropriate to turbulence measu
ments can be defined as

Re5l o^u82&1/2/n ~3.4!

where the reference lengthl o represents the upper spati
scale of eddies in the inertial range;^u82&1/2 represents the
rms value of velocity fluctuation; andn is kinematic viscos-
ity ~this is discussed, for example, in Sec. 7.3 of Ref.@11#!.

In the present paper, we are considering an evolving
semble of doublet sheet elements each ‘‘carrying’’ a len
dimension.~The i th element will have a length denoted
03631
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l i .) In the context of real flows the elements of$l i% may
derive from an originating surface characterized by a spa
spectrum of roughness scales. Moreover a sheet fragm
typically becomes stretched in the stream, and it can fo
implying an evolution in scale. Therefore, we can expect
interior ensemble of doublet sheets to consist in a variety
length scales.

Our object is to fashion within such a Lagrangian co
struction the conditions of inertial range turbulence. We u
derstand this, in kinematical terms, to be a flow regime
which diffusive displacements and inertial displacements
a doublet element are comparable in magnitude~over a com-
mon time intervaldt). Consider an element of lengthl: a
regime where such displacements are comparable can b
termined by equating a stochastic displacementh
5A2dt/Re ~which models viscous diffusion through rando
walks! to the advective displacement determined by E
~22! and ~23! in Ref. @3#. This leads to the relationship be
tween Reynolds number and sheet length parameter repo
in Ref. @3#, namely,

Re;O~l21!. ~3.5!

The flow regime characterized in this way lies at a transit
between flow in which viscous diffusion dominates the kin
matics, and one in which inertial forces dominate. We app
ciate from Eq.~3.5! that the Reynolds number we associa
with this transition~and consequently the associated diffus
ity! is scale dependent.

We can attach tol the role of reference length in th
definition of Reynolds number. Thus in the case of an
semble of uniform scale, we considerl5l o to correspond
to a representative eddy scale. We infer from Eqs.~3.4! and
~3.5! that

^u82&1/2;OS n

l2D ~3.6!

at the transitional flow regime. To understand this relatio
ship, let us conceive of a flow with a broad range of veloc
fluctuations. Some of these may vary slowly so we can ch
acterize these variations as nonstochastic in appearance~We
assume these will not contribute to correlation statistics.! Al-
ternatively, some fluctuations will be of sufficiently high fre
quency, that they are submerged in a background of pu
diffusive fluctuations. They contribute uncorrelated rando
noise to a measurement of covariance. We identify the ra
of fluctuations consistent with Eq.~3.6! as precisely the
range that contributes to the covariance for a prescribed e
scalel.

Consider a doublet ensemble characterized by the p
ence of two scalesl1 andl2. We associate with each scale
distinct transition regime, and a corresponding Reyno
number. If we consider these two subensembles to interp
etrate and consider that each constituent subensemble i
gaged in a statistically independent stochastic process~i.e.,
with distinct Reynolds number!, then the covariance of the
composite ensemble can be developed from the ensem
average of the two constituent covariances. In the followi
we will generalize this approach to embrace correlation
the discrete spectrum of scales$l i%.
4-4
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IV. NUMERICAL RESULTS: ENERGY SPECTRUM

A. Spectrum for single scale

To make a numerical demonstration of the foregoing
count of turbulence statistics, we consider a disk of rad
R50.2; we prescribe a Reynolds number Re5500, which
determines a sheet segment lengthl50.002;O(1/Re). In
effect this specifies a lower bound to the spatial scale
can be resolved in the present exercise. We hence defin
array of probe locations with a minimum separation of ord
l: we consider 45345 locations within a square of sideL
50.06. We place replicas of this probe at ten locations in
disk. Into this disk we introduce a distribution ofN51000
sheet segments that are randomly positioned, and each
random orientation. This ensemble is allowed to interact w
itself; it is also subject to viscous diffusion, modeled nume
cally using a random-walk representation. We allow this
semble of elements to evolve for ten steps to establis
mean flow field through temporal average.~The present
choice ofN leads to a fluctuation intensity of about 10%.!

Each probe array gives rise to 2 049 300 evaluations
the correlationu8(r )•u8(r1r). These are sorted into 2
nonuniformly spaced class intervals ofr values; the widths
of these intervals are chosen so that there are an equal
ber of evaluations represented in each. An ensemble ave
is taken over each interval to develop the four functio
G i(r), G'(r), Gcross(r), and S2(r). These are, in turn
sample averaged over the ten probe locations in the flow.
class intervals for this example imply thatrmin50.003 and
rmax50.05. This bandwidth determines the correspond
range ofK values to be determined through Eq.~3.1!. We
expect this range to fall in the interval 10,K,1000.

Figure 1 illustrates the covariances for this numerical c
culation, averaged over the ten location samples.~These co-
variance curves can be compared to experimental meas
ments, for example see Figs. 5.12 and 5.13 in Ref.@19#.! The
lower plot in Fig. 1 illustrates the associated cross cov
ance.

The energy spectraE(K) associated with the covariance
of Fig. 1 are illustrated in the log-log plot of Fig. 2; these a

FIG. 1. Sample-averaged covariance functions for a single s
l50.002; the corresponding cross covariance is illustrated bel
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determined by applying a simple numerical quadrature~tra-
pezium rule for nonequispaced partition! to a truncated ver-
sion of the integral~3.1!. TheK regimes for both transvers
and longitudinal spectra for which the gradient approxima
the value ‘‘25/3’’ are indicated by vertical dashed lines.

The appearance of regimes characterized by these li
gradients is typical of a range of numerical paramete
which is to say the linear regime of the energy spectra
log-log coordinates is typical. One has to ensure, howe
that the prescription of probe parametersL and n are such
that l;O(Ln21) in order to achieve significant correlation
Also, the choice of ensemble sizeN and radiusR ~and hence
particle density! should be made so that the fluctuation i
tensity is less than 10%.

We note the spectra in Fig. 2 conform to a power-la
structure only over a relatively small interval in the neig
borhood of log10K.2.25. The doublet ensemble we are co
sidering in this example is ‘‘monochrome,’’ i.e., it consists
a single spatial scalel. In physically measured flows such
uniformity of eddy scale is very unlikely to exist. The mod
of inertial range turbulence that underlies Kolmogorov sc
ing analysis is that of an ensemble of eddies of differi
scale, extending from a maximum~the integral scale! down
to a minimum~dissipation scale!. To understand the covari
ance associated with a spatial range of scales, we now
eralize the present single-scale model to embrace a disc
spectrum.

B. Self-affinity

An advantage of having developed the present part
model of ‘‘turbulence’’ is that it allows us to investigate ho
such a model scales with refined model resolution. We
construct a hierarchy of self-similar models of successiv
smaller scale and understand from the kinematics of this
underlying scaling properties. If all lengths~including the
segment lengthl) are linearly transformed by a commo

le
.

FIG. 2. Doubly logarithmic plot of energy spectra calculat
from G(r) shown in Fig. 1. These spectra relate to an ensem
consisting of only a single scale,l50.002.
4-5
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D. M. SUMMERS PHYSICAL REVIEW E 65 036314
scale factor, we arrive at a spatially scaled replica of
original doublet ensemble. Furthermore, if we scale time
this same factor, the advective kinematics will itself be
scaled replica of the original advection. Finally, if we impo
Re;O(l21), the scaling ofl implies an inverse scaling o
Re. The resulting random-walk displacementsh with which
we model viscous diffusion, will constitute a scaled repli
of the original diffusion model.

We might expect from all this thatG(r) determined from
the scaled numerical experiment will replicate at sma
scale the covariance function determined from the ‘‘fu
scale’’ experiment, i.e., ifr, l, L, R, etc., are scaled by a
factor k ~such thatk,1) so thatr85kr, we might expect
G(r) to be in some sense self-similar toG(r8). We recall
von Kármán and Howarth’s@20# analysis of the decay o
isotropic turbulence, in which they make the assumption t
the correlation function preserves its shape under sp
scaling. On the basis of the present discussion, we sug
this assumption finds a rational justification in the kinemat
of impulse. Note that whereas the independent variabler is
scaled~and the entire spatial model and its kinematics
strictly self-similar under this scaling!, the statistical covari-
ance functionG(r) continues to span the interval@0,1# for
all r at all scales. This reflects the multifractal nature of flu
turbulence, which has been described by Mandelbrot@21#.
We characterize the relationship between the statistical m
sures relating to such scaled models as that of ‘‘self-affinit

C. Hierarchy of scales

In Sec. IV A, we considered an ensemble characterized
a single scale (l50.002). This choice was arbitrary an
similar results would be obtained for any choice ofl. In the
case of an ensemble consisting of two ‘‘subensembles’’l
5l1, and l5l2, respectively!, we define a covariance b
assuming that the fluctuations derived from the scaled
merical experiments described in Sec. IV B are statistica
independent of each other. This derives from the fact t
although their kinematics are self-affine, the time scale
the diffusion coefficients of the scaled processes are ne
theless distinct. The covariance is formed by an ensem
averaging exercise over all scales present; by virtue of
statistical independence, we organize this summation pro
into two parts: we separately form the covariance associ
with l1 ~denoting this asG1) and then form that forl2
~denotedG2). We hence form the ensemble average o
these two contributions: namely, we form̂ G(r)&
5 1

2 @G1(r)1G2(r)#. In effect, we are forming the ensemb
average of two ensemble averages. As a measurement
cise, we could adjust the parameterL of the correlation probe
to determine in turnG1 andG2. Alternatively, we exploit the
self-affinity implied by the kinematics and conceive ofG2 as
a scaled image ofG1.

The foregoing strategy can be generalized in an obvi
way. We consider a fluid to consist of a discrete spectrum
scales, such that this is captured by a range of probe dim
sions in the interval@Lmin ,Lmax#. Consider an ensemble con
sisting of n interpenetrating ‘‘subensembles,’’ and consid
specifically the interval betweenr50.006 andr50.06. We
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partition this into two equally spaced subintervals and c
struct from this three covariance functions encompassing
r domains:rP@0,0.006#, rP@0,0.033#, and rP@0,0.06#.
Each subinterval can again be bisected to determine two
ther subintervals, and from this, a total of five covarian
functions can be constructed. The procedure can be repe
to determine successively nine functions, seventeen fu
tions, etc. Afterj such successive bisections we determin
self-affine hierarchy of 2j11 functions. Figure 3 illustrates
the case of 17 covariance functions~for the longitudinal
case! determined in this way. These covariances are ge
ated by assuming they are self-affine to the calculatedG(r)
determined from the numerical probe for the intervalr
P@0.0,0.06#, this case serving as a ‘‘template.’’ The thic
solid line represents the ensemble average of these 17 cu
namely,

^G~r!&5
1

17 (
j 51

17

G j~r!.

We pursue this exercise forj 59 successive bisection
~bounded byrP@0,0.0001# andrP@0,0.06#) and substitute
the resulting ensemble-averaged covariance~averaged over a
hierarchy of 513 scales! into the transform~3.1! to obtain the
energy spectrum illustrated in Fig. 4. The linear regress
formed on the interval log10KP@2.9,3.9# has a slope of
21.6660.06 that we offer as an encouraging approximat
to the Kolmogorov-Obukhov exponent. We note the ‘‘Spa
ish moss’’ effect beyond theK range corresponding to th
interval of averaging in Fig. 4; the phenomenon is discus
in a more general context on page 75 of Ref.@21#. Note also
that as the foregoing bisection process is repeated for
creasingly largej, we approach, in a pointwise sense, t
condition of scale continuum.

V. NUMERICAL RESULTS: SECOND-ORDER STRUCTURE
FUNCTION

A. Two scales in isolation

The numerical probe described in Sec. III A can be us
to determine numerically the structure functions for the e
sembles described in Secs. IV A and IV B. Figure 5 illu

FIG. 3. Ensemble-averaged covariance~thick solid line! deter-
mined from a family of 17 scales.
4-6
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FIG. 4. Energy spectrum determined from th
ensemble average of a family of 513 scalesj
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of
trates~in log-log format! the longitudinal (s) and transverse
(d) second-order structure function for these respec
scales taken in isolation. One notes that asr approaches its
lower spatial bound~i.e., l), G(r) appears to conform as
ymptotically to a power-law exponent of ‘‘4/3,’’ which is
indicated for each curve in Fig. 5. We note that, as in the c
of the energy spectrum illustrated in Fig. 2, the region o
which a linear power-law exponent can be determined
relatively small; this again relates to the fact that we
considering two models in each of which a single scale
considered in isolation, i.e., we are considering two isola
ensembles each with uniform scale. We generalize this s
ation in the following section.

B. Hierarchy of scales

For a givenl, there is, in the present method, a numeri
lower limit to the value ofr for which we can estimate
S2(r), namely, the scale of the sheet segment itself. I
therefore difficult to understand unambiguously t
asymptotic structure ofS2(r) for vanishingr. To generalize
the present procedure to include an ensemble average o
family of scales~as discussed in Sec. IV C for the case
covariance! we need to impose on this problem some und
standing of this point. We make the assumption that
structure associated with very small scales~relative tol) is
not affected by the structure at a large scale relative tol. In
practical terms, we extrapolate the structure function cu
~for fixed l) until its intersection point with ther axis ~the
point ro say!, and forr,ro we takeS2(r) to be zero for this
scale. On this basis we exploit self-affinity to extend t
range ofr for which we can describe a structure functio

FIG. 5. Second-order structure functions for the transversed)
and longitudinal (s) cases, for two individual scales each taken
isolation,l50.0002 andl50.002, respectively.
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We consider a family of subscales (rP@0,0.006#, r
P@0,0.0033#, etc.! and from this form a sequence
S2

(1)(r)S2
(2)(r), etc. We hence calculate the ensemble av

age^S2(r)&. Figure 6~a! illustrates a family of functions cor-
responding to a self-affine hierarchy of scales; the solid th
line is the ensemble average of this hierarchy. This averag
plotted in log-log coordinates in Fig. 6~b!, with the 2/3 linear
slope indicated. Forr approaching the lower limit of scale
represented in the ensemble, the 4/3 slope is also indica

It is interesting to note that we can attach some phys
significance to the maximum point of intersection ofS2(r)
with ther axis in the family of curves illustrated in Fig. 6~a!.
Let us characterize this value ofro as the maximum eddy
sizel0, in the ensemble, and writelo5max$ro%. Figure 6~b!
illustrates how the parameterl0 delimits a lower bound to

FIG. 6. ~a! Structure functions associated with a family
scales, and their ensemble average~thick solid line!; and~b! doubly
logarithmic plot of the latter average.
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D. M. SUMMERS PHYSICAL REVIEW E 65 036314
the scale of inertial range turbulence, i.e., a regime appr
mated by a 2/3 power-law exponent consistent with that
termined by Kolmogorov. We also indicate in Fig. 6~b! the
integral scale regime, and the dissipation scale regime c
sistent with this interpretation ofl0. Note that in the inviscid
limit, the scaling described in Sec. III D implies the delim
ing line labeledl0 in Fig. 6~b! will proceed to the left of the
diagram. As the inviscid limit is approached, the inertial
gime is extended towards smaller scales.

The sloping dashed line in Fig. 6~b! represents the linea
regression in the interval log10rP@23.0,22.0#, which has a
slope of 0.71860.02. It is interesting to note that this latte
value approximates the value of 0.7 for the power-law ex
nent that has been determined experimentally by a numbe
authors—for example, see Fig. 3 of Ref.@22#. In this context
it is relevant to note a comment of Viecelli@23#. He remarks
that if an intermittency correction~as developed in chap
N15 of Ref.@21#! is applied to a Lagrangian structure fun
tion determined from a 4/3 scaling law~i.e., a Richardson
law!, then the power-law exponent forS2(r) can be deter-
mined to be 0.72. We emphasize that the calculations lea
to Fig. 6~b! do not derive from such a prescribed scaling la
~i.e., we do not impose a model of superdiffusivity onto t
kinematics!. Rather, the power-law exponents we calcul
derive from the scaling properties~and presumably the inter
mittency! intrinsic to a simple Lagrangian representation
the equation of motion Eq.~2.2! in which viscous diffusion is
modeled, in a standard way, through normally distribu
Brownian motions.

VI. CONCLUSIONS

We offer here a simple constitutive~or material! answer to
what has been an enduring question: how is turbulence
lated to the equations of motion? Our answer is one that b
explains the physical origin of turbulence at a wall, a
which accounts for the appearance of two power-law sig
tures in experimental measurements of velocity fluctuati
We demonstrate this by means of computational experim
that exploit the ensemble kinematics of doublet sheet
ments.

The notion that a surface of material discontinuity in
viscous flow constitutes a generator for fluid impulse is no
phenomenological hypothesis as such. Rather, it derives
simple way from the implication of force equilibrium at a
interface. An ensemble of created doublets~in the absence o
viscosity! is a discrete Hamiltonian system. Our conjecture
that the material substructure also of viscous flow is rep
sented by such an ensemble and that Kuz’min’s decomp
tion Eq. ~2.1! is the constitutive relationship that disclos
this structure.~This conjecture is not new: it is essential
that which animates the discussion in Refs.@14,24#.!

A fluid may consist of a range of characteristic ed
scales, and we explore this by introducing a numerical pr
that ‘‘measures’’ the covariance for a scale determined by
minimum separation of probe sublocations. The covaria
associated with a variety of scales can be construc
through an ensemble average over the covariances assoc
with the constituent scales. We choose model and flow
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rameters such that the constituents of this average for
self-affine hierarchy of statistically independent random p
cesses in the neighborhood of a kinematical version of
inertial range. With this procedure we determine an appro
mation to the Kolmogorov-Obukhov exponents.

In developing the energy power-law spectrum illustrat
in Fig. 4, we have not invoked the limit of vanishing visco
ity, i.e., we have not considered the limitn→0. The ‘‘25/3’’
energy exponent is consistent with that determined by K
mogorov@1# and Obukhov@2# ~but note also that neither o
these authors invokes the limitn→0). This spectrum also
corresponds to that which is widely measured experim
tally. On the other hand, an exclusively ‘‘25/3’’ exponent is
not consistent with the energy spectrum determined
Kraichnan@8# for two-dimensional flow. The latter result de
pends on imposing inviscid flow constraints, which is to s
it depends on the zero-viscosity limit. These constraints
namely, the constancy of energy implying the spectral c
dition

E
0

`

E~K !dK5const

and the constancy of enstrophy along stream lines imply

E
0

`

K2E~K !dK5const.

The results of this latter analysis are widely taken as e
dence that such two-dimensional models cannot represen
observed energy spectrum of real three-dimensional tu
lence. In the context of our alternative impulse-based mo
we suggest the present two-dimensional model does in
approximate the energy spectrum observed in thr
dimensional turbulence.

The notion that incompressible viscous fluid consists,
part, of an interpenetrating ensemble of doublet vortex e
ments derives from the understanding of the interaction o
viscous fluid with a boundary that is described in Ref.@5#.
After ‘‘long time’’ has elapsed, such elements may even
ally lose deterministic memory of the conditions of their cr
ation. The spatial scale and orientation of an individual e
ment will evolve along with its position according to Eq
~2.2!; it will be subjected to a regime of stretching and d
fusion. However, what will be preserved in this process,
the dipolar structure of the compactly supported impu
density field. It is not clear whether this local dipolar cont
bution to the flow is expressed in the solution to a random
forced Navier-Stokes equation when this problem is pose
two-dimensional unbounded space. Since we want to at
to an impulse doublet sheet the significance of a phys
dipole source, we probably require either to describe the
ation of these dipoles~through a time-evolutionary boundar
value problem, say! or to postulate their existence~in a state-
ment of initial data, for example!. This is to emphasize that
in incompressible flow, we conceive turbulence to origina
at a boundary.

The Hodge decomposition expressed in Eq.~2.1! reflects
a mathematical property of solenoidal fields, in general.
4-8
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infer from this that the decomposition~i.e., into local and
nonlocal constituents! which is made explicit in the impulse
formulation, will be implicit in the evolution of momentum
or vorticity. In the present paper, we hypothesize that tur
lence results from the imparting of impulse into a visco
flow at a boundary. For this reason the impulse formulat
of the problem has a natural advantage for us, not only in
equation of motion, but also in the direct way in which t
boundary conditions can be expressed. However it may
be possible to cast the present model of impulse creatio
terms of primitive variables or in terms of vorticity. To d
this we would require boundary conditions for primitiv
variables~specifically for the pressure! and for vorticity that
correspond to our treatment of the conditions forf described
in Sec. II. We suggest such conditions for pressure and
ticity could reasonably be characterized as ‘‘natural con
tions’’ in the sense they would derive from the implicatio
of Newton’s third law at a boundary.

The Lagrangian impulse sheet formulation may prov
further physical insight into the relationship between Ne
ton’s laws and the phenomenology of turbulence. For
ample, we note in Sec. III D that, given an ensemble of d
blet sheets with uniform length scalel, the Reynolds
number to be associated with transition from flow domina
by diffusion, to flow dominated by advection, is given b
Re;O(l21). Moreover in Sec. IV B, we note the scaling o
Reynolds number that ensures the kinematical self-affinity
viscous flow across a range of scales is also given by
;O(l21). We suggest that it is the conjunction of these tw
v

s

ov
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facts that determines the scaling properties of inertial ra
turbulence.

The numerical evidence of the present paper may m
some contribution to a continuing debate about the role
viscosity in turbulence. Opinion divides on whether the pro
erties of turbulent flow derive fundamentally from invisc
dynamics or otherwise—see Ref.@25#.

We note that when we sum over a scale hierarchy, we
summing over particle models each characterized by
‘‘scaled’’ Reynolds number. This recalls the argument
Barenblattet al. @26# that the proportionality factors in Eqs
~3.2! or ~3.3! are Reynolds number dependent if Re is su
ciently removed from its inviscid asymptote. In the conte
of the present Lagrangian model, any characterization o
system of interpenetrating ensembles of differing scale b
singleReynolds number will at best serve to approximate
condition of strict self-affinity. The quality of this approxi
mation may improve in the limit of vanishing viscosity;
should be possible to exploit the present model to investig
this conjecture numerically.

We accept that some aspects of turbulence phenom
may require a more ambitious three-dimensional treatm
as well as requiring time differentiation of turbulence me
sures. To relate the present material model to the acce
theories of turbulence~e.g., the theory of Kolmogorov@1# or
its elaboration by Kraichnan@8# and others!, the present
model should be pursued into the limit of vanishing visco
ity. The underlying model can be naturally refined for th
purpose, and generalized into three dimensions~see Refs.
@27,28#!.
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